- **9.** Evaluate the following integral:
 - (i) $\int \frac{1}{x \log x} dx$
 - (ii) $\int \frac{x^2}{(x-1)^3(x-1)} dx$
 - (iii) $\int \frac{dx}{2 + 3\cos x}$

	Roll No.	***************************************
--	----------	---

97663

BCA 1st Semester (New) Examination – November, 2018

MATHEMATICS

Paper: BCA-103

Time: Three Hours]

[Maximum Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt *five* question in all, selecting *one* question from each Section. Q. No. 1 is *compulsory*.

- **1.** (a) Given $A = \{a, e, i, o, u\}$, $B = \{r, a, m\}$, find $A \cap B$, A B.
 - (b) If $A = \begin{bmatrix} 2 & -1 \\ 4 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$, find A + B.
 - (c) Define many one function.
 - (d) Evaluate $\lim_{x\to 1/2} \frac{4x^2-1}{2x-1}$.
 - (e) If $y = \cot 3x$, find $\frac{dy}{dx}$.
 - (f) If $y = \cot^{-1} x^3$, find $\frac{dy}{dx}$.

(g) Evaluate:

$$\int \frac{x}{x-3} \, dx$$

(h) Evaluate:

$$\int \frac{1}{\sqrt{2+x}} \, dx$$

SECTION - I

- **2.** (a) To prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
 - (b) In a class of 25 students, 12 students have taken Economics; 8 have taken Economics but not maths Find (i) the numbers of students who taken Economics and Maths (ii) those who have taken Maths but not Economics.
- 3. (a) Prove that $\begin{vmatrix} x+a & b & c \\ a & x+b & c \\ a & b & x+c \end{vmatrix} = x^2(x+a+b+c)$
 - (b) Solve:

$$x-y-z=1$$
, $2x + y + z=2$, $x-2y+z=4$

SECTION - II

- **4.** (a) Let θ be the set of all rational numbers. Show that the function $f: \theta \to \theta: f(x) = 3x + 5 \ \forall \ x \in \theta$ is bijective. Also find f^{-1} .
 - (b) If R is a relation in N × N, defined by (a, b) R(c, d) if and only if a + d = b + c, show that R is an equivalence relation.

- **5.** (a) Find $\lim_{x\to 0} \frac{\tan x \sin x}{\sin^3 x}$.
 - (b) Find $\lim_{x\to 3} \frac{3-x}{\sqrt{4+x}-\sqrt{1+2x}}$.

SECTION - III

- **6.** (a) Find the Differential coefficient of tan *x* by first principle.
 - (b) Differentiate w.r.t. x

(i)
$$\frac{x}{\sin 3x}$$

(ii)
$$\frac{x^2+1}{x+1}$$

7. Differentiate w.r.t. *x*

(i)
$$\sqrt{\frac{1-\sin x}{1+\sin x}}$$

(ii)
$$\tan^{-1} \left(\frac{\sqrt{1+x^2-1}}{x} \right)$$

(iii)
$$x^{\log x}$$

(iv)
$$\frac{x\sqrt{x^2+1}}{(x+1)^{2/3}}$$

SECTION - IV

- **8.** Evaluate the following integrals :
 - (i) $\int e^x \cos x \, dx$

(ii)
$$\int \frac{1+x}{(2+x)^2} e^x dx$$

(iii)
$$\int \frac{dx}{\sqrt{x^2 + 2x + 2}}$$