- (b) Give the basic concepts of Paging and Segmentation. 8
- **7.** (a) What is demand paging and what is its use?
  - (b) List the steps needed to perform the page replacement.

#### UNIT - IV

- **8.** Explain various file allocation methods in detail with their pros and cons with the help of suitable diagram for each method.
- **9.** Suppose that a disk drive has 1000 cylinder, numbered 0 to 999. The drive is currently serving a request at cylinder 43, and the previous request was at cylinder 125. The Queue of pending requests in FIFO order is: 86, 470, 913, 774, 948, 509, 22, 750, 130.

Calculate the total distance(in cylinder) that the disk arm moves to satisfy all the pending requests for each of the disk-scheduling algorithms i.e.

FCFS, SSTF, SCAN, LOOK, C-SCAN, C-LOOK. 16

Roll No. .....

## 97669

# BCA 3rd Semester (New) Examination – November, 2019

#### INTRODUCTION TO OPERATING SYSTEM

Paper: BCA-201

Time: Three Hours]

[ Maximum Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Question No. 1 is compulsory. Attempt four more questions selecting one question from each Unit. All questions carry equal marks.

- **1.** (a) What are the basic elements of Operating system?
  - (b) What is PCB? Specify the information maintain in

- (c) What is a Dispatcher?
- (d) How does deadlock avoidance differ from deadlock prevention?
- (e) What is logical address space and physical address space?
- (f) What is thrashing?
- (g) Give the example of relative and index file.
- (h) Examine the need for disk scheduling ?  $2 \times 8 = 16$

#### UNIT - I

- 2. (a) What is an Operating System ? What are the different services provided to its user?
  - (b) Explain the Operating System structure.
- 3. (a) Differentiate between program and process.Explain process life cycle in detail.8
  - (b) Explain the inter process communication in detail.

### UNIT - II

**4.** Consider the following set of processes with the length of the CPU-burst time given in milliseconds:

| Process | Burst time | Priority | Arrival Time |
|---------|------------|----------|--------------|
| P1      | 8          | 3        | 4            |
| P2      | 5          | 2        | 0            |
| Р3      | 3          | 1        | 1            |
| P4      | 4          | 4        | 3            |
| P5      | 1          | 2        | 2            |

Draw Gantt chart; calculate Avg. Turnaround time and Avg. Waiting time for FCFS, SJF (pre-emptive & non-pre-emptive), Priority Scheduling (pre-emptive and non-pre-emptive) and RR (Quantum=2) scheduling algorithms.

- **5.** (a) Define deadlock. Explain 4 necessary conditions for deadlock.
  - (b) Explain Banker's Algorithm to deal with the problem of Deadlock.

#### UNIT - III

**6.** (a) Explain the contiguous memory allocation techniques.

(3)