B.E. 6th Semester (Mech. Engg.) Examination,

December-2011

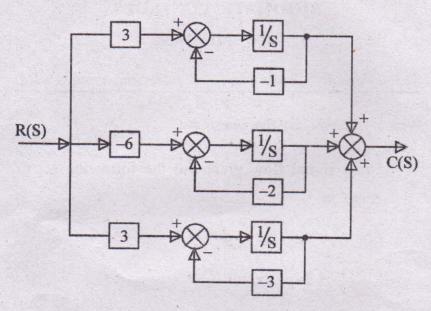
AUTOMATIC CONTROLS

Paper-ME-308-E

Time allowed: 3 hours] [Maximum marks: 100

Note: Attempt any five questions.

1. Draw signal flow graph for the following set of equations:-


(a)
$$x_2 + 5x_3 - 2x_1 = 0$$

 $x_3 + 2x_4 - 4x_2 = 0$
 $x_4 - 8x_3 = 0$

(b)
$$x_2 = 4x_1 + 2x_3 + 2x_2$$

 $x_3 = 6x_1 + 5x_2 + 2x_3$
 $x_4 = 2x_2 + 2x_3$

- 2. (a) Explain Polar Plot and Bode plot in detail. 15
 - (b) Discuss in detail poles and zeros of transfer function.

7

3. Find the transfer functions of the system shown in fig (a).

- 4. (a) Differentiate Proportional-cum. Derivative and propertional-cum-Integral control action. 12
 - (b) Explain Hydraulic and pneumatic controllers in detail.
- 5. (a) Discuss Masen's Gain formula in detail.
 - (b) Draw signal flow graph for the equations

$$x_{1} - x_{2} - 2x_{3} - 5x_{4} = 0$$

$$2x_{2} - 3x_{3} - 5x_{4} = 0$$

$$7x_{1} - 3x_{3} - 2x_{4} = 0$$
13

6. Apply Routh-Hurwitz criterion to the following equation and investigate the stability

(a)
$$S^5 + 2S^4 + 2S^3 + 4S^2 + 11S + 10 = 0$$

(b)
$$S^5 + S^4 + 2S^3 + 2S^2 + 3S + 5 = 0$$
 20

7. The forward path transfer function of a unity feedback system is given by

$$G(S) = \frac{K}{S(S+4)(S+5)}$$

Sketch the root locus as K varies from zero to infinity.

8. Determine the closed loop stability of a control system whose open loop transfer function is

$$G(S) H(S) = \frac{K}{S(1+ST)}$$

using Nyquist criterion.

20