Roll No.

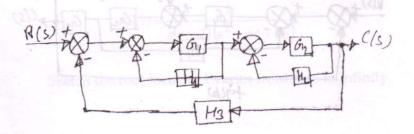
2310

B. E. 6th Sem. (Mech. Engg.)

Examination – May, 2011

AUTOMATIC CONTROLS

Paper: ME-308-E


Time: Three hours]

[Maximum Marks: 100

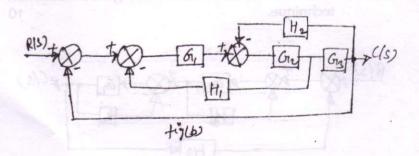
Before answering the question, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt any five questions. All questions carry equal marks.

 (a) Derive the transfer function using block reduction technique.

- (b) For the figure shown above draw signal flow graph.10
- **2.** For the system represented by the given equations find the transfer function (x_5/x_1) by the help of signal flow graph:

$$x_2 = a_{12} x_1 + a_{32} x_3 + a_{42} x_4 + a_{52} x_5$$


$$x_3 = a_{23} x_2$$

$$x_4 = a_{34} \ x_3 + a_{44} \ x_4$$

$$x_5 = a_{35} x_3 + a_{45} x_4$$

Where x_1 is the input variable and x_5 is the output variable.

3. Determine the ratio C(S)/R(S) for the system shown in fig (b):

- 4. (a) Explain in detail proportional, proportional cum derivative and proportional cum integral control.
 - (b) Discuss error constants.

5

- 5. (a) Check the stability whose characteristic equation is given by $s^4 + 2s^3 + 6s^2 + 4s + 1 = 0$.
 - (b) Investigate the stability having following characteristic equation:

$$s^5 + 6s^4 + 3s^3 + 2s^2 + s + 1 = 0$$

6. For a unity feedback system the open loop transfer function is given by: 20

$$G(s) = \frac{k}{s(s+2)(s^2+6s+25)}$$

Sketch the root locus as *k* varies from zero to infinity.

7. Determine the closed loop stability of a control system whose open loop transfer function is: 20

$$G(s) H(s) = \frac{k}{s(1+st)}$$

Using Nyquist criterion. Re Xx + Hay to + Aco Xx

8. (a) Sketch the polar plot for $G(s) = \frac{1}{s(s+1)}$. 10

5. For a unity leedback reserre the open toop fransfer

(b) Explain Bode plot in detail. 10