B.Tech. 5th Semester (Computer Science & Engg.) Examination, December-2012 THEORY OF AUTOMATA COMPUTATION

Paper-CSE-305-F

Time allowed: 3 hours?

[Maximum marks: 100]

Note: Attempt any five questions.

- 1. Explain the following:
 - (a) Partial function
 - (b) Define Regular Expression
 - (c) Limitation of FSM
 - (d) Relation between languages
 - (e) What do you mean by Σ^+
 - (f) Define ambiguity.
 - (g) What do you mean by PCP
 - (h) Define NFA and DFA mathematically
 - (i) Explain the ID in turing machine
 - (j) Application of PDA.

 $10 \times 2 = 20$

2. (a) Explain NFA significance and function. Convert the given Finite Automata into its Deterministic. Explain the method used. Taking given example prove both accept the same string.

12

- (b) Construct finite Automata to accept the regular expression (0+1)* (00+11) (0+1)*. Also discuss method used.
- 3. (a) Define Mealy and Moore Machine? Construct a Mealy machine equivalent to the Moore Machine given by the following table 4

the state of the s				
		a = 0	a=1	o/p
		q_{i+1}	q _{i+1}	
table 4	$\mathbf{q}_{_{\!0}}$	$\mathbf{q}_{_{\mathbf{l}}}$	q_2	1
	$\mathbf{q}_{_{\mathbf{l}}}$	q_3	\mathbf{q}_{2}	0
	q_2	q_2	$\mathbf{q}_{_{\mathbf{l}}}$	1
	q_3	$\mathbf{q}_{_{\!0}}$	q_3	1

13

(b) Construct the regular Expression accepted by the following Automata in fig. 2

- 4. (a) List out closure properties of Regular sets. Also Discuss Proof.
 - (b) What is Pumping Lemma? Prove that $L = \{1^{n^2} \mid n \ge 0\} \text{ is not regular.}$ 10
- 5. (a) Convert the following to GNF $S \rightarrow AB$, $A \rightarrow BS/b$,

$$B \rightarrow SA, A \rightarrow b$$

$$B \rightarrow a$$

12

(b) Define CFG and give examples. What is CFL generated by Grammer $S \rightarrow abB$, $A \rightarrow aaBb$

$$B \rightarrow bb Aa, A \rightarrow \epsilon \text{ (epsilon)}$$
 8

- 6. What do you mean by PDA? How PDA are different from FA with the help of TD? Also discuss some applications of PDA. Design a PDA for Balanced parentheses with transition diagram of PDA (TD) and test the string (()).
- 7. Explain the ID and move of a Turing Machine? Indicate the major differences between Turing Machine and PDA. Design Turing Machine to accept the language
 L = {0ⁿ1ⁿ | n> = 1}
- 8. (a) Construct a grammer for the language

 $L = \{0^{L}1^{2i} \ i \ge 1$

- (b) Discuss the Chomsky Hierarchy of Grammers.
 Also determine the type of the Grammer G which consist the productions
 - (a) $S \rightarrow aA, A \rightarrow aAB, B \rightarrow b, A \rightarrow a$
 - (b) $A \rightarrow aB, B \rightarrow aA, B \rightarrow b, A \rightarrow a$
 - (c) $S \rightarrow aAB, AB \rightarrow bB, B \rightarrow b, A \rightarrow aB$
 - (d) $S \rightarrow aAB, AB \rightarrow C, A \rightarrow b, B \rightarrow AB$ 14
- 9. (a) What is meant by recursive and recursively enumerable languages? Prove that if language L and its complement I are both recursively enumerable then L is recursing.
 - (b) Discuss Bimiting function in detail. 6