Roll No. ....

31/5/19 (m)

# **RE-24357**

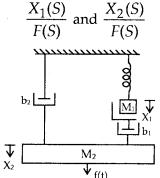
# B. Tech. 6th Semester (ME) Examination – May, 2019 AUTOMATIC CONTROL

Paper: ME-308-F

Time: Three Hours]

[ Maximum Marks: 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.


Note: Question No. 1 is compulsory. Attempt one question from each Section. All questions carry equal marks.

**1.** Explain the following:

- $5 \times 4 = 20$
- (a) Machine tool control and boiler control
- (b) Laplace transform
- (c) Nichols plots
- (d) Nyquists criterion
- (e) State vector differential equation

#### SECTION - A

**2.** Find transfer function:



**3.** Explain hydraulic, pneumatic and electronic controllers.

## SECTION - B

**4.** The transfer function of any system is given as : 20

$$\frac{C(S)}{R(S)} = \frac{1}{S^3 + 9S^2 + 26S + 24}$$

Find:

- (i) Impulse response
- (ii) Step response with magnitude 5 unit
- **5.** Explain the following:

20

20

- (a) Polar plots
- (b) Rectangular plots
- (c) Equivalent unity feedback system

#### SECTION - C

**6.** Find the time response of the system and predict its stability as time approaches infinity, for input  $r(t) = \sin(t)$  20

$$T(S) = \frac{1}{(S+1)(S^2+1)}$$

**7.** Find the break away point for root loci of the system whose open loop transfer function is : 20

$$U(S)H(S) = \frac{K(S+1)}{S(5S+6)}$$

## SECTION - D

- **8.** Find the z-transform of the system  $X(S) = \frac{1}{S^2 + 2S + 2}$ , where T = 1 sec.
- 9. What are state space equations? Discuss in detail mathematically. Explain various methods of decomposition of transfer function.