Roll No	
---------	--

24357

B. Tech. (ME) 6th Semester (Re-appear) Examination – October, 2020

AUTOMATIC CONTROL

Paper: ME-308-F

Time: 1.45 Hours]

[Maximum Marks: 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt any *three* questions. All questions carry equal marks.

- **1.** Explain the following terms :
 - (a) Active Vibration Control
 - (b) Error Constants
 - (c) Equivalent Unity Feedback System

- (d) Gain and Phase Margins
- (e) Pulse Transfer Function
- **2.** What is control system ? Explain types of control system along with their applications.
- **3.** What are controllers ? Explain hydraulic and pneumatic controllers.
- **4.** Solve the following differential equation and find current 'i', if unit step input voltage is applied to the system:

$$i(0+) = 1, \frac{di}{dt}(0+) = 2$$

$$\frac{d^2i}{dt^2} + 4\frac{di}{dt} + 5i = 5\mu(t)$$

- **5.** Explain open and closed loop transfer function in detail.
- **6.** Comment on the stability of the system whose characteristic equation is

$$s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$$

7. Find the points of intersection of root loci with imaginary axis for the system

$$G(s)H(s) = \frac{K}{s(s+4)(s^2+4s+13)}$$
.

8. Find the pulse transfer function for the following arrangements:

9. Consider the system defined by following differential equation:

$$\frac{d^3c(t)}{dt^3} + \frac{5d^2c(t)}{dt^2} + \frac{8dc(t)}{dt} + \frac{12c(t)}{dt} = 5r(t)$$