UNIT - I

2.	Con	vert	the	followin	g num	bers	with	the	ind	icated
	bases to decimals:									
	(a)	(1212	21)3							n n
	(b)	(4310)) ₅							
	(c)	(50) ₇							13.07	
	(d)	(198)	12	Y.,			<u>*</u>			
	(e)	(125)	7				, w			
3.	(a)	Expl	ain I	Logic Mic	roopera	ations	in de	tail.		7.5
	(b)	Expl	ain S	Shift Micr	oopera	tions	in det	ail.		7.5
				U	NIT – II	in)				
4.	Explain design of accumulator logic in detail. 15									15
5.	Define addressing modes. Explain different types of									
	add	ressi	ng m	nodes in d	etail.				l.	15
				U	NIT – II					
6.	Des	cribe	par	allelism.	What	are i	ts _. obj	ectiv	es ?	Also
	exp	lain p	oipel	ining tecl	mique.					15
7.	Hov	w p	arall	lel proc	essing	enh	ances	the	e s	ystem
	per	forma	ince	? Explair						15

(2)

3086-3300-(P-3)(Q-9)(23)

Roll No.

3086

B. Tech. 4th Semester (CSE) Examination – May, 2023

COMPUTER ORGANIZATION & ARCHITECTURE

Paper: PCC-CSE-204-G

Time: Three hours]

[Maximum Marks: 75

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt any five questions in all, selecting one question from each Unit. Question No. 1 is compulsory. All questions carry equal marks.

- 1. (a) Convert the following binary numbers to decimal: 111010; 100101.
 - (b) Why Gray code is called reflected code? Explain.
 - (c) Write down the list of registers and their functions of the basic computer.
 - (d) What is direct associative memory? Describe.
 - (e) What is interrupt? Explain types of interrupt.
 - (f) Explain cache memory mechanism. $2.5 \times 6 = 15$

3086-3300-(P-3)(Q-9)(23)

P. T. O.

UNIT - IV

8. Write short notes on the following:

15

- (a) Direct Memory Access
- (b) Software Interrupts
- 9. What is associative memory? Explain direct mapped cache organization in detail.