Roll	No.	 •••

24171

B. Tech 4th Semester (Mechanical Engg.) Examination May, 2012 STRENGTH OF MATERIALS – I

Paper: ME-206-F

Time: Three Hours] [Maximum Marks: 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

- Note: (i) Attempt *five* questions in total, at least one question from each section.
 - (ii) Question No. 1 is Compulsory.
 - (iii) Each question carries equal 20 marks.
 - **1.** (a) Define strength of a material. What are the factors upon which it depends?
 - (b) Differentiate between a stress and a strain, mentioning their units.

P. T. O.

- (c) The Hooke's Law holds good upto:
 - (i) the elastic limit
 - (ii) the yield point
 - (iii) the limit of proportionality
 - (iv) the ultimate point.
- (d) The temperature stress is a function of:
 - (i) the co-efficient of Linear expansion and temperature rise.
 - (ii) the temperature rise and modulus of elasticity of the material.
 - (iii) Co-efficient of Linear expansion and modulus of elasticity of the material.
 - (iv) the Co-efficient of Linear expansion, temperature rise and modulus of elasticity of the material.
- (e) The maximum Bending Moment in a simply supported beam of Span *l* and carrying a concentrated load W at mid span is:
 - (i) wl
 - (ii) wl/2
 - (iii) wl/4
 - (iv) 2wl

(f)	The max. B.M. in a simply supported beam of span l and carrying a u.d.l. of intensity w per unlength is:		
e	(i) $wl/4$ (ii) $wl^2/4$		
	(iii) $wl/8$ (iv) $wl^2/8$		
(g)	State assumptions made while determining the equation for bending stress.		
(h)	Define Neutral Surface and Neutral Axis.		
(i)	An elastic prop is one where :		
	(i) the deflection is zero		
	(ii) the deflection is known		
	(iii) the B. M. is zero		
	(iv) the S. F. is zero.		
(j)	Moment area method is a method for determining		
	(i) the B. M. at a point.		
	(ii) the S. F. at a point.		
	(iii) the slope at a point.		
	(iv) the deflection at a point.		
24171-8,9	30-(P-7)(Q-9)(12) (3) P. T. O.		

SECTION - A

2. A bar AD (Fig. 1) is pinned at A, and supported by copper rod 40 mm² in area and 1.5 m long at B, also supported at C by a steel rod of 30 mm² in area and 1-m length. The bar AD is rigid and horizontal before applying a load of 1000 kg (9810 N) at the end D. Determine the stresses and elongations produced in copper and steel rods after the applications of above load. Take Ec = 10 × 10³ kg/mm² (98.1 G N/m²)

 $Es = 20 \times 10^3 \text{ kg/mm}^2 (196.2 \text{ G N/m}^2)$

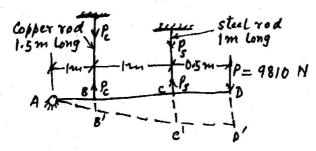


Fig. 1

3. At a point in a strained material, the principal stresses are 120 mPa tensile and 60 mPa compressive. Find the resultant stress and its direction on a plane inclined at 45° to the axis of 120 MPa stress by Mohr's circle diagram. Also determine the maximum intensity of shear stress in the material.

SECTION - B

4. Draw the S.F. and B.M. diagrams for the Cantilever shown in Fig. 2:

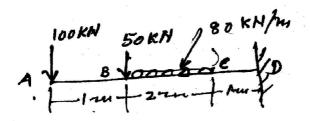


Fig. 2

5. What diameter of shaft will be required to transmit 80 kW at 80 r. p. m., if the maximum torque is 30% greater than the mean and the limit of torsional stress is to be 56 MPa. ?

SECTION - C

- **6.** A rectangular beam 6 cm × 4 cm is 2 m long and is simply supported at the ends. It carries a load 1 KN at mid spam. Determine the maximum bending stress induced in the beam.
- **7.** (a) (i) Differentiate between a strut and a column or a pillar or a stanchion.

(ii) Differentiate between a slender strut and a stocky strut.

(iii) fill in the blanks:

- (iv) What do you mean by a Fixed end of a strut?
- (v) What do you mean by a Free end of a strut?
- (b) Enumerate assumptions made in the theory referring to struts which are very long as compared to lateral dimensions.

SECTION - D

8. A horizontal girder of steel having uniform section is 14 m long and is simply supported at its ends. It carries concentrated loads of 120 kN and 80 kN at two points, 3 m & 4.5 m from the two ends respectively. $I = 16 \times 10^4$ cm⁴ and Es = 210 GPa. Calculate the deflection of the girder at points under the two loads.

9. A horizontal beam, built – in at each end, has a clear span of 4.5 m and carries loads of 50 kN at 1.5 m and 70 kN at 2.5 m from its left hand end. Calculate the fixing moments and the position and amount of maximum bending moment.