Roll No.	
ALUPPITO	***************************************

3056

B. Tech 3rd Semester (ME) Examination – December, 2019

PHYSICS - II (Optics & Waves)

Paper: BSC-ME-201-G

Time: Three Hours]

[Maximum Marks: 75

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt *five* questions selecting *one* question from each Unit and Question No. 1 is *compulsory*.

1. Explain the following:

 2.5×6

- (a) What is meant by resonance and quality factor?
- (b) What are nodal planes and nodal points? Can nodal plane coincides with unit planes?
- (c) Why there is need of extended source in the interference by division of amplitude?
- (d) Derive the relation between Einstein coefficients.

- (e) Prove that when damping forces are present, the frequency of an oscillator is reduced by $12.5/Q^2$ percent where Q is Quality factor.
- (f) Explain dispersive and resolving power.

UNIT - I

- Establish the differential equation for forced harmonic oscillator and discuss the condition for resonant amplitude. Show the dependence of the amplitude as a function of driving frequency.
- **3.** Define damped harmonic oscillations and write it differential equation. Show amplitude of weak damped oscillation decays exponentially with time. 15

UNIT - II

- **4.** Write a short note on following:
 - (a) Fresnel equations

8

(b) Fermat's principle and its applications

. 7

- 5. (a) Derive an expression for longitudinal sound wave in solid.
 - (b) Write a short note on nodal plane.

5

UNIT - III

6. (a) Explain the working of Michelson interferometer. How will you produce circular fringes with? 10

(2)

3056-1850-(P-3)(Q-9)(19)

- (b) How will you measure the difference in wavelength between D lines of sodium light? 5
- 7. (a) Differentiate between Fraunhofer and Fresnel diffraction. Explain the phenomenon of diffraction through a single slit.
 - (b) Explain Rayleigh's criterion of resolution.

UNIT - IV

- **8.** (a) What do you understand by solid state laser? Describe the principle, construction and working of Ruby laser.
 - (b) A certain ruby laser emits 100 J pulses of light whose wavelength is 6940Å. What is the minimum number of Cr³+ ions in the ruby? 05
- 9. (a) Explain laser action and give characteristics of a laser beam. Enlist the names of various lasers in use and discuss any one of them.
 - (b) Calculate the coherence length for a laser beam for which the band width is $\Delta v = 300 \text{ Hz}$.