Roll No.

57502

BBA 1st Semester (New Scheme) Examination - December, 2022 BUSINESS MATHEMATICS

Paper : BBAN-102

Time : Three Hours]
 | Maximum Marks : 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note : Section-A (Question No. 1) is compulsory. Attempt four questions from Section - B selecting one question from each Unit. All questions carry equal marks.

SECTION - A

1. Briefly explain and illustrate the following :
(a) Union of two sets
(b) Cartesian product of two sets
(c) Relationship between indices and logarithms
(d) Common ratio
(e) ${ }^{n} C_{r}$
(f) Equations reducible to quadratic equations
(g) Scalar matrix
(h) Integration

SECTION - B

UNIT - I

2. Using suitable examples, explain and illustrate the differences between :
(i) Equal and equivalent sets
(ii) Finite and infinite sets
(iii) Joint and disjoint sets
(iv) Intersection and difference of two sets
(v) Null and singleton sets
3. (a) Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be any three sets. Prove that:
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(b) If a universal set $u=\{x \mid x$ is a positive integer $<25\}$, $A=\{2,6,8,14,22\}, B=\{4,8,10,14\}, C=\{6,10,12$, $14,18,20\}$. Prove that :
(1) $\left(B^{\prime} \cap C^{\prime}\right) \cup\left(B^{\prime} \cap C\right)=C \cap\left(A^{\prime} \cup B^{\prime}\right)$
(11) $(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A} \cup \mathrm{B}$

UNIT - II

4. (a) Show that: $\frac{(81)^{n} \cdot 3^{5}-3^{4 n-1}(243)}{9^{2 n} \cdot 3^{3}}-\frac{4 \cdot 3^{n}}{3^{n+1}-3^{n}}=4$
(b) Show that: $\log \frac{384}{5}+\log \frac{81}{32}+3 \log \frac{5}{3}-\log 9=2$
5. (a) Sum of p terms of an A.P. is q and sum of q terms is p. Find the sum of $p+q$ terms.
(b) Sum of three numbers in G.P. is 28 and sum of their squares is 336 . Find the numbers.

UNIT - III

6. (a) In how many ways can the letters of the word STRANGE be arranged so that the :
(i) Vowels are never separated
(ii) Vowels never come together
(iii) Vowels occupy any the odd places
(b) Prove that: : ${ }^{n+1} C_{r}={ }^{n} C_{r}+{ }^{n} C_{r-1}$
7. (a) Find the absolute term in the expansion of $\left(x-\frac{2}{x^{2}}\right)^{16}$.
(b) Solve : $\frac{x}{b}+\frac{b}{x}=\frac{a}{b}+\frac{b}{a}$

UNIT - IV

8. Solve the following set of linear equations

$$
\begin{aligned}
& x+2 y+3 z=14 \\
& 3 x+y+2 z=11 \\
& 2 x+3 y+z=11
\end{aligned}
$$

9. (a) A firm has the following total revenue and total cost functions

$$
\begin{aligned}
& T R=100 x-x^{2} \\
& T C=x^{3}-\frac{57}{2} x^{2} \text { where } x \text { is the level of output. }
\end{aligned}
$$

Find the maximum profit.
(b) Evaluate :
(i) $\int(2 x-3)^{2} d x$
(ii) $\left.\int \frac{a x^{3}+b x^{2}+c x+d}{x}\right) d x$

