57502

BBA 1st Semester (New Scheme)
 Examination, February-2022
 BUSINESS MATHEMATICS

Paper-BBAN-102

Time allowed : 3 hours]
[Maximum marks : 80
Note: Section-A (Question No. 1) is compulsory. Attempt one question from each unit in Section-B. All questions carry equal marks.

Section-A

1. (a) Write the elements of set

$$
A=\left\{x: \frac{-1}{2}<x<\frac{9}{2}, x \in z\right\}
$$

(b) Find the power set of the set $A=\{1,2,5\}$
(c) Solve $=16^{x+1}=\frac{64}{4^{x}}$
(d) Which term of the series, $20+16+12 \ldots---$ is -96 ?
(e) In how many ways can 5 passengers sit in a compartment having 8 vacant seats ?
(f) What is an absolute term?
(g) What is the condition for addition of two matrices? Illustrate.

57502-P-3-Q-9(22)
(h) Differentiate $\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2}$ w.r.t. x

Section-B

Unit-I
Using suitable examples, explain and illustrate the following :
(a) Disjoint sets
(b) Intersection of two sets
(c) Complement of set
(d) Cartesian product of two sets

If $A=\{2,4,6,8,10\}, B=\{1,2,3,4,5,6,7\}$ and $C=\{2,6,7,10\}$ then verify that -
(a) $\mathrm{A}-(\mathrm{B} \cup \mathrm{C})=(\mathrm{A}-\mathrm{B}) \cap(\mathrm{A}-\mathrm{C})$
(b) $\mathrm{A}-(\mathrm{B} \cap \mathrm{C})=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{A}-\mathrm{C})$
(c) $(A \cap B) \cap C=A \cap(B \cap C)$

Unit-II

$$
\begin{aligned}
\text { rove that } & =\frac{1}{1+x^{a-b}+x^{a-c}}+\frac{1}{1+x^{b-c}+x^{b-a}} \\
& +\frac{1}{1+x^{c-a}+x^{c-b}}=1
\end{aligned}
$$

5. (a) Sum of three numbers in AP is 30 and their product is 960 . Find the numbers.
(b) Which term of the series 1, 2, $4 \ldots-\cdots$ is 2048 ?

Unit-III

6. Solve the equation :

$$
\sqrt{3 x^{2}-7 x-30}-\sqrt{2 x^{2}-7 x-5}=x-5
$$

7. Find $(x+a)^{n}$, if First three term of expansion are 729. 7290 and 30375 respectively.

Unit-IV

8. (a) Differentiate $x^{2}(x+1)\left(x^{3}+3 x+1\right)$ w.r.t. x
(b) Integrate $\frac{1}{\sqrt{x-1}-\sqrt{x+1}}$ w.r.t. x
9. Solve the following set of linear equations using Cramer Rule -

$$
\begin{aligned}
& x+y+2 z=-1 \\
& x-2 y+z=-5 \\
& 3 x+y+z=3
\end{aligned}
$$

