3001

Examination – February, 2022 B. Tech. (ECE) 1st Semester

INTRODUCTION TO ELECTROMAGNETIC THEORY

Paper: BSC-PHY-101-G

Time : Three Hours]

[Maximum Marks : 75

have been supplied the correct and complete question paper. No Before answering the questions, candidates should ensure that they complaint in this regard, will be entertained after examination.

- Attempt five questions in all and each question carry equal marks. Select only one question from each unit but 1st question is *compulsory*. Note:
- **1.** Attempt any *six* questions :
- (a) Define electric polarization and dielectric constant.
- (b) State Biot-Savart's law.
- (c) If charge particles of equal value 'q' are placed at each corner of a square of side 'a' in vacuum then find out total electric energy of system.

- (d) Define Eddy current and explain its application as electromagnetic breaking
- (e) What do you mean by displacement current and write its expression ?
- State Stokes theorem and explain its physical significance. (J)
- Define electric dipole and electric dipole moment. 6
- Find out the value of divergence of a position vector $(\vec{r} = x\hat{i} + y\hat{j} + z\hat{k})$ *i.e.* $\vec{\nabla} \cdot \vec{r}$. (2.5 × 6 = 15) (h)

UNIT - I

- Derive equation of electric energy density in term of electric field intensity. (a) 2 N
- Find out electric field intensity and electric ω potential at axial line of short electric dipole. (q)
- (a) Derive Poisson and Laplace's equations. ကံ
- ω Define gauss law and find out electric field intensity at distance 'r' from straight uniform charge wire of infinity length and linear charge density '\'. (q)

UNIT - II

- Derive the equation of magnetic vector potential. 7 (a) 4
- ∞ Show that $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$ and $\vec{\nabla} \cdot \vec{B} = 0$. (\mathbf{q})
- Derive magnetic field at axial and equatorial line of a bar magnet (a) <u>ы</u>.
- (χ_m) and relative permeability (μ_r). Derive the relation between magnetic 8 Define magnetic flux density (\overline{B}), magnetizing field intensity (\vec{H}), intensity of magnetization and (I), magnetic susceptibility (μ_r) permeability susceptibility (χ_m) . relative (\mathbf{q})

UNIT - III

- Derive the equation of magnetic energy stored in a magnetic field i.e., $U_m = \frac{1}{2\mu_0} \int B^2 dV$. (a)ġ.
- State Poynting theorem and derive equation of 8 Poynting vector (\overline{S}) . (q)
- modified Ampere's law satisfy the equation of Derive equation of continuity and show that \sim continuity. (a) 2.
- its circular conducting wire of area (A) which is rotating about its diameter with uniform angular differential equation. Find out inducede.m.f.in a State Faraday laws in EMI and derive speed (@) in uniform magnetic field (B). (q)

(3)

P. T. O.

UNIT - IV

- E wave electromagnetic of speed vacuum Derive (a) œ
- 8 Write properties of electromagnetic waves and show that electromagnetic wave is transverse in nature. (q)
- 5 magnetic field intensity is equivalent to speed of ~ Show that ratio of electric field intensity electromagnetic wave i.e., E/B = C. (a) 6
- Prove that pressure exerted by EM wave incident perpendicularly on the highly absorbing surface is ratio of intensity of wave to speed of the wave i.e., P = I/C. (\mathbf{q})

ω

(4)