Roll No.

(d) Define Eddy current and explain its application as

UNIT - I

L
(b) Define gauss law and find out electric field

8 density ' λ '.
$3001-1250-(P-4)(Q-9)(22) \quad$ (2)
II- IIN
4. (a) Derive the equation of magnetic vector potential. 7
(b) Show that $\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}$ and $\vec{\nabla} \cdot \vec{B} \quad 0$
5. (a) Derive magnetic field at axial and equatorial line
of a bar magnet.
(b) Define magnetic flux density (\vec{B}), magnetizing
field intensity (\vec{H}), intensity of magnetization
(\vec{I}), magnetic susceptibility $\left(\chi_{m}\right)$ and relative
permeability $\left(\mu_{r}\right)$. Derive the relation between
relative permeability $\quad\left(\mu_{r}\right) \quad$ and magnetic
susceptibility $\left(\chi_{m}\right)$.
UNIT - III

