9. Write about:

- (a) Laminar film condensation on a vertical plate. 10
- (b) Heat transfer with change of phase. 10

Roll No.

24356

B. Tech. 6th Semester (ME)

Examination – May, 2019

HEAT TRANSFER

Paper: ME- 306-F

Time: Three Hours]

[Maximum Marks: 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Section. Question No. 1 is compulsory.All questions carry equal marks.

1. Write notes on:

 $5 \times 4 = 20$

- (a) Heat Transfer with suitable examples.
- (b) Fin Effectiveness.
- (c) Stephen-Boltzmann Law.
- (d) Boiling Regimes.

SECTION - A

2.	Write about :	•		
	(a) Combined Heat Transfer System.	10		
	(b) Law of Energy Conservation.	10		
3.	Explain Cartesian Coordinate System for conduction.	heat · 20		
SECTION - B				
4. Two rods A and B of the same length and diameter protrude from a surface at 120°C and are exposed to air at 25°C. The temperatures measured at the end of the rods are 50°C and 75°C. If thermal conductivity of material A is 20 W/m-deg, calculate the thermal conductivity of material B. Adopt the condition of a fin insulated at the tip.				
5.	Write about:			
	(a) Transient Heat Conduction.	10		
	(b) Relaxation Method.	10		

SECTION - C

6. Dis	cuss about :	
(a)	Momentum Equations.	10
(b)	Fluid Friction and Heat Transfer.	10
7. Dis	scuss about :	
(a)	Shape factors and their relationships.	10
(b)	Black body radiation.	10
	SECTION - D	

8. Exhaust gases $(C_p = 1.12 \, kJ/Kg - \deg)$ flowing through a tubular heat exchanger at the rate of 1200 kg/hr are cooled from 400°C to 120°C. The cooling is affected by water $(C_p = 4.18kJ/Kg \, K)$ that enters the system at 10°C at the rate of 1500 kg/hr. If the overall heat transfer coefficient is 500 kJ/m²-hr-deg. What heat exchanger area is required to handle the load

- (a) Parallel flow, and
- (b) Counter flow arrangement? 20

(3)

for: