8．（a）The depth of flow of water，at a certain section of a
rectangular channel of 2 m wide，is 0.3 m ．The
discharge through the channel is $1.5 \mathrm{~m}^{3} / \mathrm{s}$ ．
Determine whether a hydraulic jump will occur，
and if so，find its height and loss of energy per kg
of water．
（b）What is hydraulic jump ？Write down different
types of hydraulic jump and various applications
of hydraulic jump．
9．（a）Define surge in an open channel．Derive an
expression for positive surge due to sudden
increase of flow．
（b）Explain the moment of momentum equation．

NI－LINO

energy line is having a slope of 0.00004 ．
bed slope 1 in 4000，is regulated in such a way 5 m / s ．The flow of water through such a way that when the water is rectangular channel of 10 m with a velocity of 1 Find the rate of 10 m wide and 1.5 m deep，

 water flowing through a rectangular chan 5

$3080-1750-(\mathrm{P}-4)(\mathrm{Q}-9)(21)$

 Loss of traction in pipe pue uọsuedxa uәppns of anp peay fo ssot （iv）Elements \＆characteristics of and dum！ग̣̣nexp （ii）Loss or it super－critical flow （i）Causes of turbulence

 complaint in this regard，by selecting one question have been supplied the will be entertained after examination． Before answering the questions，cand complete question paper．No Time：Three hours ］candidates should ensure that they

 ตNษ

（I！！

080E

$$
\mathrm{Gl}=9 \times \mathrm{S} \cdot \mathrm{Z}
$$

pue
(i) Loss of head due to sudden enlargement
(ii) Pressure intensity in the large pipe
(ii) Pressure intensity
(b) Explain Pipes in series and parallel with diagrams
and its expression.
5. (a) Define hydraulic gradient line and total energy
line with diagram.
(b) A Pipe of diameter 20 cm and length 2000 m
connects two reservoirs, having difference of
water levels as 20 m . Determine the discharge
through the pipe. If an additional pipe of diameter
20 cm and length 1200 m is attached to the last
1200 m length of the existing pipe, find the
increase in the discharge. Take $\mathrm{f}=0.015$ and
neglect minor losses.
UNIT - III

UNIT - I
2. (a) Derive any two of the following for laminar flow

