Roll No.

3003

B. Tech. 1st Semester (CSE) Examination – March, 2021 SEMICONDUCTOR PHYSICS Paper : BSC-PHY-103-G

Time : Three Hours][Maximum Marks : 75Before answering the questions, candidates should ensure that they have
been supplied the correct and complete question paper. No complaint in
this regard, will be entertained after examination.

- *Note* : Attempt *five* questions in all, selecting *one* question from each Unit. Question No. **1** is *compulsory*. All questions carry equal marks.
 - **1.** Attempt any *six* parts : $2.5 \times 6 = 15$
 - (i) What are main drawbacks of classical free electron theory ?
 - (ii) When does an intrinsic s/c behave as an insulator ?Explain giving examples of intrinsic s/c.
 - (iii) What is meant by density of states in metals ?
 - (iv) Define stimulated and spontaneous emission.

3003-1850-(P-4)(Q-9)(21)

P. T. O.

- device Why is Schottky junction diode preferred over Pn frequency for high diode application ? junction (Λ)
- What is the significance of Fermi energy level ? Under what condition Fermi-Dirac distribution function changes to Boltzmann distribution (vi)

(vii) What is band gap theory ?

(viii) What is meant by latch-up in a CMOS structure ?

UNIT - I

- Derive S states function ? expression for density of states. What is density of (a) N N
- and the doping at which the Boltzmann Consider a P-type silicon at 300 K doped with Assume that the limit of the Boltzmann S when $E_f - E_a = 3KT$. Determine the Fermi level position approximation is still valid. occurs approximation maximum boron. (q)
- What is expression for probability of function of states ? Discuss complete ionization and freeze out electrons and holes in the donor and acceptor 5 condition for suitable band-energy diagrams. ΰ
- Discuss the Kronig-Penny model for the motion of 8 an e in a periodic potential. **3**. (a)
- What is Fermi level ? Derive an expression for the Fermi-energy in terms of the number of electrons ~ per unit volume. (q)

(2)

UNIT - II

E	II.	ŝ	>	ISIC	C
menon	present			intrir	
pheno	ften 1			of	
is presented with and diffusion phenomenon in	Used often present in		2	resistivity of intrinsic	
it and	which		evices	044 1	הדוכ
the drif	actor.	incror,	luctor d		MON
Discuss	connet/1	semicono	semiconductor devices ?		(h) Explain now we
	(a)				(4)
	e,				

- 3 0 What is Fermi-Dirac distribution function ? semiconductor varies with temperature. (c)2
- barrier height proportionately related to position Explain Schottky Effect. Show that actual Schottky of maximum barrier height due to Schottky effect. 0 (a) ເດ
- As Design an ohmic contact for n-type Ga As using In S Ga Ч Ŀ. graded an intervening As. With region. (q)

UNIT - III

0	9
6. (a) What is Drude Model ?	(b) Define and explain optical loss and gain.
(a)	(q)
9.	

- Bulk 9 in place takes How optical transitions Semiconductors ? (a) 7.
 - Define spontaneous emission and absorption in detail. Why population inversion is necessary for 6 stimulated emission ? (q)

(3)

UNIT - IV

 8. (a) Write the concept of band gap by UV-VIS spectroscopy. 9. 0. Write concept.

9. Write and explain design fabrication and characterization 5 techniques for quantum wells, wires and dots.

-(P-4)(Q-9)(21) 3003-

4