Roll No.

3095

B. Tech. 4th Semester (EE) Examination – July, 2021

DIGITAL ELECTRONICS

Paper: PCC-EE-202-G

Time: Three hours]

[Maximum Marks: 75

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Question No. 1 is compulsory. Attempt four more questions, selecting one question from each Section.

- 1. (a) De-Morganize the following function [(A + B') + (C + D')]'. $1.5 \times 10 = 15$
 - (b) Represent (32)₁₀ in excess 3 code.
 - (c) Realize AND gate using NAND.
 - (d) Define encoder.
 - (e) What is the Gray equivalent of $(25)_{10}$.
 - (f) What is programmable logic array? How it is differs from ROM?

- (g) How many address bits are required to represent a 4 K memory?
- (h) For JK flip-flop if, J = 0, K = 1, what will be the output after clock pulse?
- (i) How many two input AND gates and two input OR gates are required to realize Y = BD + CE + AB?
- Write the decimal equivalent of hex number 1 A53

SECTION - A

- 2. (a) Give comparison between various logic families.
- (b) Draw and give truth table of following gates:

0

S

- (a) EX-OR
- (b) AND
- (c) OR
- (d) NOR
- (e) NAND
- 3. (a) Write in detail about various error detecting and correction codes.
- (b) Using Boolean algebra, reduce the following functions:
- (i) $y = A\overline{B}C + B\overline{D} + AB\overline{D} + \overline{A}C$
- (ii) $y = [(A+B)(\overline{A}+B)] + [(A+B)(A+\overline{B})]$

^{3095-1500-(P-4)(Q-9)(21)} (2)

SECTION - B

- 4. (a) What is half adder? Explain a half adder with the help of truth table and logic diagram.
- (b) Use K-map to simplify each expression:

 $Y = (AC + A\overline{C}D)(AD + AC + BC)$

- (a) What is De-multiplexer? Explain, with the help of suitable block diagram and logic circuit of 1 to 16 de-multiplexer.
- (b) Implement the function $F(x, y, z) = \Sigma(1, 2, 6, 7)$ using 4×1 multiplexer.

SECTION - C

- (a) What is synchronous counter? Design a MOD-5 synchronous counter using J-K flip flop. 6
- (b) Explain working of serial in serial out shift register.
- 7. (a) Draw the circuit diagram of Master Slave J-K flip J-K flip flop? condition? How is it eliminated in a Master slave flop using NAND gates. What is the race around 6
- (b) What is shift register? What are its various types? List out some applications of shift register.

3095-1500-(P-4)(Q-9)(21) (3)

P. T. O.

SECTION - D

8. With the help of R-2R binary ladder, explain the working of 4-bit D/A converter.
9. Differentiate between following:
(i) Static and dynamic RAM
(ii) PLA and PAL

(iii) RAM and ROM

B.Tech. (EE) 4th Semester (G-Scheme) Examination, July-2022 DIGITAL ELECTRONICS Paper- PCC-(EE-202-G)

Time allowed: 3 hours] [Maximum marks: 75

Note: Attempt five questions in total selecting one from each unit. Question number 1 is compulsory.

- 1. (a) Find the decimal equivalent of the following binary numbers assuming sign magnitude representation of binary numbers 6×2.5
 - (i) 101100 °
- (ii) 1111
- (b) Represent the following numbers in one's compliment form
 - (i) 11010100
- (ii) 10010100
- (c) Find two's compliment of the numbers
 - (i) 01100100
- (iii) 11011000
- (d) Explain half subtractor.
- (e) What do you mean by Don't care condition?
- (f) Explain D-type flip-flop.

Unit - I

2.	Explain operation of Schottky TTL.		15
3.	Formulate 8-bit ASCII code for 'My dear Surender and represent it in hexadecimal code with (i) Ever parity (ii) Odd parity		
		Unit - II	
4.	Minimise the logic function in POS form as:		15
	f (A	$A, B, C, D) = \Pi M (4, 6, 10, 12, 13, 15)$	
5.	Simplify the Logic function		15
	Y(A	$A,B,C,D) = \sum M(0, 1, 3, 7, 8, 10, 11, 15)$	
•	Usir	ng the Quine - McCluskey minimization tech	nique
		Unit - III	
6.	(a)	Explain parallel to serial converter.	7
	(b)	What are the applications of converters.	8
7.	Exp	lain clocked S-R Flip-Flop.	15
		Unit - IV	
8.	(a)	Explain successive approximation converter.	A/D
	(b)	What do you man by CAM.	10
9.	(a)	Explain parallel comparator A/D converted	r. 10
	(b)	Discuss programmable array logic.	5