Roll No.

3100

B. Tech. 4th Semester (EE) Examination – July, 2021

MATHEMATICS-III (Numerical Methods, Probability & Statistics)

Paper: BSC-MATH-204-G

Time: Three Hours]

[Maximum Marks: 75

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

- Note: Attempt five questions in all, selecting one question from each Unit. Question No. 1 is compulsory. All questions carry equal marks.
 - 1. (a) State Regula-Falsi method.
 - (b) Write Newton's forward difference formula.
 - (c) Write Trapezoidal rule of numerical integration.
 - (d) Define transcendental equation.

- (e) Explain Taylor's series method for ordinary differential equations.
- (f) Write one dimensional heat equation.
- (g) Define conditional probability:
- (h) Define discrete random variables.
- Define skewness.
- Define hypothesis.

I-TINU

- **2.** Find the positive root of $x^3 2x 5 = 0$ by :
- Bisection method
- (ii) Newton's method
- Given the values :

Evaluate f(9), using Newton's divided difference formula.

II - LINO

- **4.** Apply Runge-Kutta method to find an approximate value of y for x = 0.2 in steps of 0.1, if $\frac{dy}{dx} = x + y^2$, given that y = 1, where x = 0.
- **5.** Solve the Poisson equation :

$$U_{xx} + U_{yy} = -81xy$$
, $0 < x < 1$, $0 < y < 1$ given that:

$$u(0, y) = 0$$
, $u(x, 0) = 0$, $u(1, y) = 100$, $u(x, 1) = 100$ and $h = \frac{1}{3}$.

UNIT - III

- **6.** Explain various discrete probability distributions in short.
- 7. Write short note on:
- (i) Expectation of discrete random variables.
- (ii) Variance of a sum of discrete random variables.

UNIT - IV

- 8. Write detail note on different measures of central tendency.
- 9. Write note on:
 - (i) Large sample test for single proportion.
 - (ii) Tests for single mean.

B. Tech (EE) 4th Semester (G. Scheme) Examination, July-2022 MATHEMATICS-III

(Numerical Methods Probability and Statistics)
Paper code: BSC-MATH-204-G

Time allowed: 3 hours]

[Maximum marks: 75

Note: Attempt five questions in total by selecting one question from each unit. Question no. 1 is compulsory.

- 1. (a) Define interpolation.
 - (b) Write Newton's backward difference formula.
 - (c) State Simpson's $\frac{1}{3}$ rd rule.
 - (d) State Simpson's $\frac{3}{8}$ th rule.
 - (e) Explain Euler's method for solution of ordinary differential equations.
 - (f) Write two dimensional Laplace equation.
 - (g) State Baye's theorem.
 - (h) Define discrete random variables.
 - (i) Define Kurtosis.
 - (j) Define Hypothesis testing.

(2)

3100

•

Unit-I

- 2. Find a root of $x^3-3x+1=0$, by using :
- (i) Bisection Method
- (ii) Newton's Raphson Method
- Given the values:

5202	2366	1452	392	150	<i>f</i> (x)
17	13	11	7	5	x :

Evaluate f(9), using Lagrange formula.

Unit-II

- 4. Using Runge-Kutta Method, solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$, with y(0)=1 at x = 0.2, 0.4
- 5. Solve the partial differential equation:

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = -10 (\mathbf{x}^2 + \mathbf{y}^2 + 10)$$

over the square with sides x = 0 = y, x = 3 = y with u = 0 on the boundary and mesh length = 1.

(3)

3100

Unit-III

- Describe the following in short:
- (i) Binomial distribution
- (ii) Poisson distribution
- Write detail note on continuous distribution functions and densities.

Unit-IV

- 8. Write detail note on hypothesis testing with the help of various test.
- Explain Chi-Square Test for goodness of fit and independence of attributes in detail.