Roll No.

3113

B. Tech. 4th Semester (ME) Examination – May, 2023

FLUID MECHANICS

Paper: PCC-ME-204-G

Time: Three hours]

[Maximum Marks: 75

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Unit. Question No. 1 is compulsory. All questions carry equal marks.

- 1. (a) Define Pascal's Law.
 - (b) Define flow net.
 - (c) State Euler's equation and Bernoull's theorem.
 - (d) What is the difference between nozzle and diffuser.
 - (e) Define hydraulic line and total energy line.
 - (f) Define Turbulant flow.

 $2.5 \times 6 = 15$

UNIT - I

- Derive the differential equation of continuity in cylindrical co-ordinates.
- 3. Explain the following:

15

- (i) Newton's Law of viscosity
- (ii) Different types of flows
- (iii) Vorticity and circulation

UNIT - II

- 4. Explain the principle of venturimeter with a neat sketch and establish a relation for the rate of flow through it.
- 5. Explain stagnation properties, isentropic flow and effect of area variation on flow properties.15

UNIT - III

- 6. Give a proof of Hagen-Poiseuille equation for fully developed laminar flow in a pipe and hence show that the Darcy-friction coefficient is equal to 16/Re where Re is Reynolds number.
- 7. What are the different types of energy losses occur in pipes. Derive an expression for the loss of head due to friction in pipe.

UNIT - IV

8.	Exp	olain the following:	15
	, ,	Momentum Thickness Laminar and turbulent boundary layer flow	
9.		olain the following :	15
	(a)	Turbulant flow	
	(b)	Shear stress in turbulant flow, prandte mix length hypothesis.	ing